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Abstract. Dengue and Zika are viral diseases primarily transmitted to humans 

through bites from infected female Aedes aegypti mosquitoes, posing considera-

ble medical concerns due to their potential severity. These illnesses can lead to 

fatal hemorrhagic fevers and have affected around 300 million people globally. 

Early diagnosis is crucial for effective treatment. Despite extensive research over 

recent decades, achieving diagnostic accuracy remains challenging. This study 

introduces a novel method for organizing clinical data to enhance the identifica-

tion of Zika and Dengue by utilizing symptoms as features extracted from clinical 

studies and applying machine learning techniques for classification tasks. Rigo-

rous statistical analysis using ANOVA and Kruskal-Wallis tests revealed p-va-

lues below 0.05, indicating significant findings. Additionally, the classifiers exa-

mined demonstrated AUCs and F1 scores exceeding 96%, highlighting their ef-

fectiveness. This approach aims to improve diagnostic precision, thereby facili-

tating timely intervention and reducing the impact of these diseases on global 

health. 
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1 Introduction 

Dengue and Zika fever are viral diseases transmitted to humans primarily through the 

bite of an infected female Aedes aegypti mosquito. While other species of the Aedes 

genus can also transmit these viruses, their role is generally secondary [1]. Once a mos-

quito becomes a vector, it remains so for its entire lifespan. Both diseases are more 

prevalent in tropical and subtropical regions, with an increasing incidence observed in 

recent years. The World Health Organization (WHO) reported a dramatic rise in dengue 

cases, from 505,430 cases in 2000 to 5.2 million in 2019 [2]. 

Dengue is often asymptomatic; however, when symptoms do appear, they typically 

resolve within one to two weeks. Despite being classified as mild or moderate, dengue 
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can develop into a severe form, involving bleeding and requiring hospitalization due to 

the risk of fatality. Common symptoms include fever, headache, retro-orbital pain, nau-

sea, and vomiting [3]. A second dengue infection often leads to more severe illness, 

which can be misdiagnosed as other febrile illnesses. Similarly, Zika fever, caused by 

the ZIKV virus, is transmitted by the same mosquito species and can also be spread 

through sexual transmission. 

Symptoms include rash, itching, non-purulent conjunctivitis, arthralgia, myalgia, 

and fever. Only about one in four infected individuals exhibit symptoms, which are 

generally mild and last for 2 to 7 days. The clinical presentation is often similar to 

dengue or Chikungunya, necessitating laboratory confirmation [4]. Currently, there is 

no specific treatment for dengue, with management focusing on pain relief, while avoi-

ding nonsteroidal anti-inflammatory drugs (NSAIDs) due to bleeding risks. 

Research teams worldwide are increasingly using machine learning and data mining 

techniques to improve disease diagnosis. For example, decision trees have been suc-

cessfully used to differentiate between tropical infections [5]. In Paraguay, researchers 

achieved an average accuracy of 96% using Support Vector Machine classifiers and 

Artificial Neural Networks [6]. An Android application named GZC-DIAG outperfor-

med resident physicians in diagnosing diseases with a 96.88% success rate [7]. 

Innovations continue with machine learning integrated into laboratory tests, such as 

peripheral blood smear (PBS) analysis, showing promising results with up to 95.74% 

accuracy in detecting Dengue Virus (DENV) [8]. Despite challenges related to data 

scarcity in specific clinical analyses, these advancements underscore the potential of AI 

in transforming diagnostic capabilities. 

Moreover, beyond diagnosis, efforts are being made to predict the risks associated 

with diseases like dengue. Studies have demonstrated accuracies ranging from 70% to 

96.27% using various techniques, including bioelectrical impedance analysis (BIA) and 

neural networks [9, 10]. These predictive models not only aid in diagnosing but also in 

assessing the prognosis and potential complications of patients. 

Looking forward, the development of more affordable and portable diagnostic tools, 

such as biosensor devices, represents a significant advancement, particularly for re-

source-limited settings. Furthermore, AI-driven models have proven effective in fore-

casting disease outbreaks, achieving up to 89.25% accuracy in predicting dengue out-

breaks [11]. In India, AI has been used to predict outbreaks and diagnose diseases like 

Zika using data from users and environmental factors. The processing time is 0.15 s 

with 91.25% accuracy [12]. 

The diagnosis by 3D super-resolution microscopy images has been used in Zika, 

these images are taken from the endoplasmic reticulum (ER). Deep learning techniques 

were able to identify morphological changes in the ER caused by the virus [13]. Simi-

larly, ensemble methods were applied to identify cases of congenital Zika, these were 

based on the U.S. Zika Pregnancy and Infant Registry (USZPIR) and the Zika Active 

Pregnancy Surveillance System (ZAPSS) of Puerto Rico, and although it presented a 

high sensitivity (96% for USZPIR and 97% for ZAPSS), the model was specifically 

designed for this dataset [14]. 

Research on using Electrocardiogram (ECG)-derived heart rate variability (HRV) 

metrics and machine learning (ML) models to predict infant exposure to Zika virus 

(ZIKV) has been conducted. In a study of 21 infants with an average age of 15 months, 

a cubic support vector machine classifier was applied to their ECGs [15]. The research 
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team reported that their model was able to differentiate between infants affected by 

Zika, non-affected by Zika, and those not affected by the virus with a predictive value 

of 86%. However, there is some dispute about whether HRV is a specific attribute 

of Zika. 

A review, reported in 2022, concluded that machine learning and deep learning te-

chniques for diagnosing arboviral diseases focus mainly on dengue and do not effecti-

vely differentiate between more than two different pathologies. It was also noted that 

decision tree-based techniques are the most used [16]. 

The approaches mentioned above yield important findings, but they are not sufficient 

for accurately diagnosing tropical diseases. We propose a feature coding method that 

takes into account the 50 most common symptoms and utilizes advanced machine-lear-

ning techniques to identify Zika and Dengue pathology.  This work comprises several 

sections. Section 2 provides a brief overview of the database. Section 3 offers an in-

depth analysis of features using ANOVA and Kruskal Wallis, including p-value 

analysis. Section 4 outlines the performance of classifiers in determining Zika and Den-

gue. Section 5 discusses the results of this work. Finally, in Section 6, we present 

our  conclusions. 

2 Database 

As depicted in Fig. 1, we have developed a methodology for establishing a database 

consisting of four subprocesses: data collection, screening, identification, and enco-

ding. We will now elaborate on each stage. 

 

Fig.1. Processing system for a codified symptoms database. 

Table 1. Codification of symptoms. 

# Patient Patho-

logy 

Fever Heada-

che 

Myal-

gia 

Nau-

sea 

Rash 

1 Zika  0 0 0 0 1 

2 Dengue 1 1 0 0 0 

3 Dengue 1 1 1 0 0 

4 Zika 0 1 0 0 1 
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2.1 Data Collection and Screening 

To gather reliable data and establish a database, a search was conducted in the PubMed 

database using the keywords "dengue," "prevalence," and "clinical symptoms." The se-

lected studies had to meet specific criteria. Firstly, they needed to report on at least 50 

patients diagnosed with dengue through laboratory tests. Secondly, they had to mention 

at least five symptoms observed in confirmed dengue patients. Thirdly, they were re-

quired to provide the number of patients affected by each symptom, including the mor-

tality rate. Finally, they needed to confirm that the symptoms were observed within the 

first four days of the disease. 

To gather Zika data, a search was conducted in the PubMed database using the 

keywords "Zika fever," "prevalence," and "clinical symptoms." However, as there were 

significantly more papers for Dengue (1,999 papers) than for Zika (673 papers), the 

selection criteria were adjusted as follows: 

1. The study must report on at least 20 patients diagnosed with Zika through labora-

tory tests. 

2. The study should mention more than five different symptoms observed in confir-

med Zika patients. 

3. The study should provide the number of patients who experienced each symptom. 

4. The study should present the mortality rate. 

5. The symptoms should have been observed within the first four days of the disease. 

The following criteria are used to select papers: Each paper is from relevant journals, 

such as PLOS Neglected Tropical Diseases [17], BMC Infectious Diseases [18], Annals 

of Medicine [19], The Lancet Infectious Diseases [20], among others. We aim to mini-

mize redundant investigations to ensure that each study provides unique and valuable 

information. To avoid bias, data is selected from different hospitals, years, and coun-

tries for each study. 

2.2 Identification 

For the identification processing, the age, gender, economic status, and nationality of 

the patients were not recorded in any of the cases. After collecting the necessary data, 

22,379 dengue-confirmed patients and 7,135 Zika-confirmed patients were observed 

for up to 37 and 34 different symptoms, respectively. In total, 20 common and 30 other 

symptoms were observed, making up 50 symptoms. 

2.3 Encoded 

The patients' symptoms were coded, a label was added to each symptom indicating “1” 

if the symptom was present and “0” if it was absent. To illustrate the codification, table 

1 considers four patients and five symptoms: Patient 1 is coded as 00001 with Zika 

pathology. Subsequently, we established a database coded for Zika and Dengue sym-

ptoms. Next, a statistical analysis is performed to find significance. 
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3 Features Statistical Analysis 

3.1 ANOVA 

The features are evaluated through the ANOVA test, calculating the F-value by mean 

equation (1): 

𝐹 =
𝑀𝑆𝐵

𝑀𝑆𝑊
. (1) 

To calculate the mean square between (MSB) groups for the ANOVA test, it should 

start by calculating the mean of each group. 

Then, calculate the overall mean (the mean of all data points combined), and finally 

calculate the sum of squares between groups (SSB) by equation (2). 

Table 2. F-value and H-value calculated for some symptoms. 

Symptoms ANOVA Kruskal-Wallis 

Rash 1.6871 × 104 1.0735 × 104 

Fever 1.4924 × 104 9.9118 × 103 

Conjunctivitis 6.4686 × 103 5.3059 × 103 

Pruritus 3.1877 × 103 2.8770 × 103 

Low back pain 2.3153 × 103 2.1469 × 103 

Retro orbital pain 1.6269× 103 1.5419× 103 

Sore throat 1.1335× 103 1.0916 × 103 

Edema 1.1249× 103 1.0836 × 103 

 

Fig.2. p-value with ANOVA and Kruskal-Wallis analysis. 

𝑆𝑆𝐵 = ∑ 𝑛𝑖(�̅�𝑖 − �̅�)2𝑘
𝑖=1 , (2) 
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where 𝑛𝑖 is the number of observations in group 𝑖, �̅�𝑖 is the mean of group 𝑖 and �̅� is 

the overall mean. The degrees of freedom between groups (𝑑𝑓𝑏) can be computed by 

equation (3): 

where 𝑘 is the number of groups. Calculated the 𝑆𝑆𝐵 and 𝑑𝑓𝑏, the MSB is computed 

by equation (4): 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝑏
. (4) 

To compute mean square within (MSW) groups for the ANOVA test, initially, the 

sum of squares within groups (SSW) is calculated by equation (5): 

𝑆𝑆𝑊 = ∑ ∑(𝑋𝑖𝑗 − �̅�𝑖)
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

, (5) 

where 𝑋𝑖𝑗 is the 𝑗-th observation in group  𝑖. The degrees of freedom within (𝑑𝑓𝑤) are 

calculated by equation (6): 

𝑑𝑓𝑤 = 𝑁 − 1, (6) 

where 𝑁 is the total number of observations across all groups. Finally, the MSW is 

calculated by the equation (7): 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑤
. (7) 

3.2 Kruskal-Wallis Test 

A Kruskal-Wallis analysis was also conducted using the statistical test (𝐻 or  𝜒2 chi-

square) represented by equation (11): 

𝐻 =
12

𝑁𝑠 (𝑁𝑠 + 1)
∑ (

𝑆𝑆𝑖

𝑛𝑖
) − 3(𝑁𝑠 + 1)

𝑘

𝑖=1

, (8) 

where 𝑘 is the number of groups, 𝑁𝑠  is the total number of observations, 𝑛𝑖 is the 

number of observations in the 𝑖-th group and 𝑆𝑆𝑖 is the sum of the squared ranks within 

the 𝑖-th group. 

In Table 2, ANOVA and Kruskal-Wallis analyses are being performed to compare 

symptoms such as rash, fever, conjunctivitis, pruritus, low back pain, retro-orbital pain, 

sore throat, and edema. As can see in Fig. 2, the statistical analysis provides a detailed 

p-value analysis to determine the statistical significance of these symptoms, with the 

majority showing a p-value of less than 0.05. 

𝑑𝑓 = 𝑘 − 1, (3) 
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4 Classification 

We are evaluating five classifiers: cubic SVM, quadratic SVM, Gaussian, fine KNN, 

and weighted KNN. We conducted an AUC analysis to assess the overall discriminative 

ability of the classifiers between the positive and negative classes. The AUC is deter-

mined by the true positive rate (TPR) and the false positive rate (FPR), which are cal-

culated by equation (9) and equation (10), respectively: 

𝑇𝑃𝑅 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑠 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
, (9) 

𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)
 . (10) 

As seen in Fig. 3, the classifiers achieve an AUC near 0.96, indicating a high level 

of performance. 

The F1-score was calculated, and the accuracy of the test was measured using equa-

tion (11): 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 , (11) 

where precision and recall are calculated by equation (12) and (13), respectively: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
, (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
. (13) 

Under 100 iterations and a holdout of 80/20, we performed calculations to determine 

the average Area Under the Curve (AvgAUC) and its standard deviation (StdAUC), as 

well as the average F1-Score (AvgF1) and its standard deviation (StdF1) for balanced 

sets, with the minority class being the Zika pathology. Subsampling was conducted for 

the majority class, resulting in three sets. 

The first and second sets consisted of 7135 data for Zika and Dengue, respectively, 

while the third set comprised 8109 data for Dengue and 7135 for Zika, with the majority 

class being dengue. Tables 3, 4, and 5 display the performance of different classifiers, 

all of which exceeded the 96% threshold. 

5 Discussion 

The effectiveness of machine learning techniques also depends on how the data is re-

presented. Therefore, it is essential to conduct a statistical analysis to distinguish bet-

ween Zika and Dengue based on their symptoms. After performing ANOVA and Krus-

kal-Wallis tests, it was determined that symptoms such as fever, rash, conjunctivitis, 

pruritus, low back pain, retro-orbital pain, sore throat, and edema exhibited the most 

statistical significance. 
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Therefore, these symptoms are crucial for predicting diseases using machine lear-

ning techniques. Despite utilizing 50 symptoms, the computational cost was not signi-

ficantly affected. 

While this did not significantly impact the current research, adding data from addi-

tional diseases could substantially increase computational costs. 

The study also identified the best-performing classifiers. Decision tree-based classi-

fiers and ensemble models like random forest, adaboost, and gradient boosting exhibi-

ted acceptable performance levels of around 90%, although they were found to be less 

effective than SVM-based models and certain non-parametric algorithms such as k-

nearest neighbors (KNN). This study specifically focused on a limited number of di-

seases, namely Zika and Dengue. If additional diseases are included, it will be neces-

sary to analyze more symptoms and conduct more rigorous statistical analyses. 

Table 3. AUC Average performance for the first set. 

Classifier AvgAUC StdAUC AvgF1 StdF1 

Fine KNN 0.9689  0.00285 0.9683 0.0029503 

Cubic SVM 0.9862 0.00282 0.9817 0.0019973 

Medium Gaussian 

SVM 

0.9870 0.00318 0.9824 0.0018754 

Quadratic SVM 0.9871 0.00344 0.9821 0.0018718 

Weighted SVM 0.9758 0.00266 0.9626 0.0030827 

Table 4. AUC Average performance for the second set. 

Classifier AvgAUC StdAUC AvgF1 StdF1 

Fine KNN 0.9703  0.00260 0.9694 0.00276 

Cubic SVM 0.9865 0.00299 0.9816 0.00228 

Medium Gaussian 

SVM 

0.9890 0.00269 0.9822 0.00219 

Quadratic SVM 0.9750 0.00302 0.9823 0.00198 

Weighted SVM 0.9758 0.00266 0.9618 0.00303 

Table 5. AUC Average performance for the third set. 

Classifier AvgAUC StdAUC AvgF1 StdF1 

Fine KNN 0.96869  0.00330 0.9676 0.00351 

Cubic SVM 0.98496 0.00296 0.9813 0.00265 

Medium Gaussian 

SVM 

0.98591 0.00290 0.9818 0.00250 

Quadratic SVM 0.98801 0.00355 0.9816 0.00248 

Weighted SM 0.97419 0.00287 0.9609 0.00378 
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6 Conclusions 

We have developed a new method for organizing clinical data to help detect diseases 

such as Zika and Dengue. Our analysis revealed significant differences, with a p-value 

of 0.05, using ANOVA and Kruskal-Wallis tests. When we tested the features using 

various classifiers, we achieved an average performance of over 96%, ranging from 

96% to 99%, through iterative training and testing. The classification was performed 

using an 80/20 holdout and 100 iterations, and the results from the classifiers demons-

trate that the data is well represented. 

In our future research, we aim to analyze more clinical data and explore other tropi-

cal diseases like Chikungunya. We also plan to use different machine learning models 

for classification and investigate the incorporation of deep learning techniques. 
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